Chapter 7 Analysis by Spatial Extent
Bar charts and tables to examine how contributions to conferences vary by methods
#spec(cpdata)
spatdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Spatial, value = count, Micro:`Undefined Extent`) %>%
filter(count > 0) %>%
group_by(`Spatial`) %>%
summarise_all(sum, na.rm=T)
factor_order <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined Extent')
factor_labels <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined')
spatdata <- spatdata %>%
mutate(Spatial = factor(Spatial, levels = factor_order)) %>%
arrange(Spatial)
uspatdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Spatial, value = count, Micro:Global) %>%
filter(count > 0) %>%
group_by(`Spatial`) %>%
summarise_all(sum, na.rm=T)
ufactor_order <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined Extent')
ufactor_labels <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined')
uspatdata <- uspatdata %>%
mutate(Spatial = factor(Spatial, levels = ufactor_order)) %>%
arrange(Spatial)
7.1 Total Conference Contributions
General observations:
- Dominated by Local extent studies, but also many at national and regional extents
- Global and Continental (largest extent) have fewest studies (8 and 27 respectively)
#ggplot(authCounts, aes(x=Spatial, y=count)) + geom_bar(stat="identity")
spatdata %>%
select(Spatial, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | count | prop |
---|---|---|
Micro | 36 | 0.043 |
Mini | 101 | 0.120 |
Local | 235 | 0.278 |
Regional | 172 | 0.204 |
National | 147 | 0.174 |
Continental | 29 | 0.034 |
Global | 9 | 0.011 |
Undefined Extent | 115 | 0.136 |
ggplot(spatdata, aes(x=Spatial, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=Spatial, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.5))+ theme(axis.text.x = element_text(angle = 15, hjust = 1)) +
labs(y = "Abstract Count")
uspatdata %>%
select(Spatial, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | count | prop |
---|---|---|
Micro | 36 | 0.049 |
Mini | 101 | 0.139 |
Local | 235 | 0.322 |
Regional | 172 | 0.236 |
National | 147 | 0.202 |
Continental | 29 | 0.040 |
Global | 9 | 0.012 |
ggplot(uspatdata, aes(x=Spatial, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=Spatial, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.5))+ theme(axis.text.x = element_text(angle = 15, hjust = 1)) +
labs(y = "Abstract Count")
7.3 Landscape Type
7.3.1 Using all landscape types
General observations:
- Global extent studies do not consider Lowland rural landscapes
lspCounts <- spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(sum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Total = rowSums(.[2:8])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | Upland rural | Lowland rural | Urban | Riverscape | Seascape | Undefined LspType | Other | Total | Upland rural_prop | Lowland rural_prop | Urban_prop | Riverscape_prop | Seascape_prop | Undefined LspType_prop | Other_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 4 | 20 | 5 | 4 | 1 | 3 | 1 | 38 | 0.105 | 0.526 | 0.132 | 0.105 | 0.026 | 0.079 | 0.026 |
Mini | 14 | 64 | 13 | 15 | 5 | 4 | 1 | 116 | 0.121 | 0.552 | 0.112 | 0.129 | 0.043 | 0.034 | 0.009 |
Local | 39 | 120 | 47 | 34 | 26 | 15 | 3 | 284 | 0.137 | 0.423 | 0.165 | 0.120 | 0.092 | 0.053 | 0.011 |
Regional | 34 | 96 | 14 | 17 | 18 | 9 | 5 | 193 | 0.176 | 0.497 | 0.073 | 0.088 | 0.093 | 0.047 | 0.026 |
National | 36 | 50 | 9 | 14 | 14 | 39 | 11 | 173 | 0.208 | 0.289 | 0.052 | 0.081 | 0.081 | 0.225 | 0.064 |
Continental | 4 | 10 | 2 | 4 | 2 | 13 | 5 | 40 | 0.100 | 0.250 | 0.050 | 0.100 | 0.050 | 0.325 | 0.125 |
Global | 0 | 0 | 2 | 1 | 3 | 4 | 0 | 10 | 0.000 | 0.000 | 0.200 | 0.100 | 0.300 | 0.400 | 0.000 |
Undefined Extent | 4 | 24 | 5 | 18 | 8 | 58 | 4 | 121 | 0.033 | 0.198 | 0.041 | 0.149 | 0.066 | 0.479 | 0.033 |
ggplot(lspCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Landscape", y = "Abstract Count", x="Extent")
ggplot(lspCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Landscape", y = "Proportion", x="Extent")
7.3.2 Without ‘Undefined LspType’ and ‘Other’ landscape types
General observations:
- National extent studies have largest proportion of Upland Rural landscape studies
- Micro, Mini and Regional extent studies dominated by Lowland rural
- ‘Undefined extent’ has largest proportion of riverscape studies
lspCounts <- spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(Total = rowSums(.[2:6])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | Upland rural | Lowland rural | Urban | Riverscape | Seascape | Total | Upland rural_prop | Lowland rural_prop | Urban_prop | Riverscape_prop | Seascape_prop |
---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 4 | 20 | 5 | 4 | 1 | 34 | 0.118 | 0.588 | 0.147 | 0.118 | 0.029 |
Mini | 14 | 64 | 13 | 15 | 5 | 111 | 0.126 | 0.577 | 0.117 | 0.135 | 0.045 |
Local | 39 | 120 | 47 | 34 | 26 | 266 | 0.147 | 0.451 | 0.177 | 0.128 | 0.098 |
Regional | 34 | 96 | 14 | 17 | 18 | 179 | 0.190 | 0.536 | 0.078 | 0.095 | 0.101 |
National | 36 | 50 | 9 | 14 | 14 | 123 | 0.293 | 0.407 | 0.073 | 0.114 | 0.114 |
Continental | 4 | 10 | 2 | 4 | 2 | 22 | 0.182 | 0.455 | 0.091 | 0.182 | 0.091 |
Global | 0 | 0 | 2 | 1 | 3 | 6 | 0.000 | 0.000 | 0.333 | 0.167 | 0.500 |
Undefined Extent | 4 | 24 | 5 | 18 | 8 | 59 | 0.068 | 0.407 | 0.085 | 0.305 | 0.136 |
ggplot(lspCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Landscape", y = "Abstract Count", x="Extent")
ggplot(lspCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Landscape", y = "Proportion", x="Extent")
7.4 Organism
General observations:
- Global studies are again qualitatively different from other scale studies - no amphibiams, birds, reptiles, woodland studies but largest proportions of Fish and generic Habitat studies
- Smallest extents (mini and micro) have largest proportions of Plant and Inverts studies
speciesCounts <- spatdata %>%
select(Spatial, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Total = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | Mammals | Humans | Birds | Reptiles | Inverts | Plants | Amphibians | Fish | Generic Habitat | Woodland Forests | Total | Mammals_prop | Humans_prop | Birds_prop | Reptiles_prop | Inverts_prop | Plants_prop | Amphibians_prop | Fish_prop | Generic Habitat_prop | Woodland Forests_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 1 | 0 | 6 | 0 | 18 | 17 | 3 | 0 | 3 | 3 | 51 | 0.020 | 0.000 | 0.118 | 0.000 | 0.353 | 0.333 | 0.059 | 0.000 | 0.059 | 0.059 |
Mini | 6 | 5 | 23 | 0 | 39 | 25 | 1 | 3 | 17 | 16 | 135 | 0.044 | 0.037 | 0.170 | 0.000 | 0.289 | 0.185 | 0.007 | 0.022 | 0.126 | 0.119 |
Local | 15 | 32 | 43 | 2 | 25 | 29 | 5 | 3 | 74 | 53 | 281 | 0.053 | 0.114 | 0.153 | 0.007 | 0.089 | 0.103 | 0.018 | 0.011 | 0.263 | 0.189 |
Regional | 7 | 17 | 26 | 2 | 12 | 20 | 2 | 3 | 52 | 40 | 181 | 0.039 | 0.094 | 0.144 | 0.011 | 0.066 | 0.110 | 0.011 | 0.017 | 0.287 | 0.221 |
National | 8 | 19 | 16 | 2 | 10 | 20 | 0 | 0 | 49 | 34 | 158 | 0.051 | 0.120 | 0.101 | 0.013 | 0.063 | 0.127 | 0.000 | 0.000 | 0.310 | 0.215 |
Continental | 1 | 6 | 4 | 0 | 1 | 4 | 0 | 0 | 12 | 4 | 32 | 0.031 | 0.188 | 0.125 | 0.000 | 0.031 | 0.125 | 0.000 | 0.000 | 0.375 | 0.125 |
Global | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 4 | 0 | 8 | 0.000 | 0.125 | 0.000 | 0.000 | 0.000 | 0.125 | 0.000 | 0.250 | 0.500 | 0.000 |
Undefined Extent | 6 | 11 | 15 | 1 | 10 | 10 | 1 | 1 | 35 | 17 | 107 | 0.056 | 0.103 | 0.140 | 0.009 | 0.093 | 0.093 | 0.009 | 0.009 | 0.327 | 0.159 |
ggplot(speciesCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Organism", y = "Abstract Count", x="Extent")
ggplot(speciesCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Organism", y = "Proportion", x="Extent")
7.5 Methods
General observations:
- Global, Continental and Undefined Extent have the greatest proportions of Theoretical, Qualitative and Remote Sensing studies
- Smallest extents (mini and micro) have the largest proportions of Empirical studies (and local have largest absolute number)
- Regional and Local studies have largest number and proportions of GIS studies (and GIS used least at extremes of extents, i.e. mini, micro and global)
methodsCounts <- spatdata %>%
select(Spatial, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(sum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Total = rowSums(.[2:7])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | Empirical | Theoretical | Qualitative | Quantitative | GIS | Remote sensing | Total | Empirical_prop | Theoretical_prop | Qualitative_prop | Quantitative_prop | GIS_prop | Remote sensing_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 27 | 4 | 0 | 17 | 4 | 1 | 53 | 0.509 | 0.075 | 0.000 | 0.321 | 0.075 | 0.019 |
Mini | 72 | 9 | 9 | 53 | 13 | 5 | 161 | 0.447 | 0.056 | 0.056 | 0.329 | 0.081 | 0.031 |
Local | 115 | 28 | 52 | 102 | 73 | 14 | 384 | 0.299 | 0.073 | 0.135 | 0.266 | 0.190 | 0.036 |
Regional | 82 | 33 | 29 | 93 | 65 | 12 | 314 | 0.261 | 0.105 | 0.092 | 0.296 | 0.207 | 0.038 |
National | 56 | 44 | 40 | 69 | 35 | 4 | 248 | 0.226 | 0.177 | 0.161 | 0.278 | 0.141 | 0.016 |
Continental | 6 | 11 | 14 | 11 | 9 | 3 | 54 | 0.111 | 0.204 | 0.259 | 0.204 | 0.167 | 0.056 |
Global | 2 | 5 | 4 | 4 | 1 | 1 | 17 | 0.118 | 0.294 | 0.235 | 0.235 | 0.059 | 0.059 |
Undefined Extent | 35 | 56 | 24 | 34 | 11 | 5 | 165 | 0.212 | 0.339 | 0.145 | 0.206 | 0.067 | 0.030 |
ggplot(methodsCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Method", y = "Abstract Count", x="Extent")
ggplot(methodsCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Method", y = "Proportion", x="Extent")
7.6 Temporal Extent
7.6.1 With undefined
General observations:
Spatial | Hours | Days | Weeks | Months | Years | Decades | Centuries | Longer | Undefined Temporal | Total | Hours_prop | Days_prop | Weeks_prop | Months_prop | Years_prop | Decades_prop | Centuries_prop | Longer_prop | Undefined Temporal_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 0 | 0 | 2 | 6 | 8 | 2 | 0 | 0 | 18 | 36 | 0 | 0.000 | 0.056 | 0.167 | 0.222 | 0.056 | 0.000 | 0.000 | 0.500 |
Mini | 0 | 0 | 2 | 6 | 19 | 15 | 3 | 0 | 60 | 105 | 0 | 0.000 | 0.019 | 0.057 | 0.181 | 0.143 | 0.029 | 0.000 | 0.571 |
Local | 0 | 1 | 1 | 14 | 31 | 38 | 11 | 2 | 126 | 224 | 0 | 0.004 | 0.004 | 0.062 | 0.138 | 0.170 | 0.049 | 0.009 | 0.562 |
Regional | 0 | 0 | 1 | 3 | 13 | 33 | 5 | 3 | 103 | 161 | 0 | 0.000 | 0.006 | 0.019 | 0.081 | 0.205 | 0.031 | 0.019 | 0.640 |
National | 0 | 0 | 0 | 0 | 14 | 38 | 3 | 2 | 77 | 134 | 0 | 0.000 | 0.000 | 0.000 | 0.104 | 0.284 | 0.022 | 0.015 | 0.575 |
Continental | 0 | 0 | 0 | 0 | 2 | 3 | 2 | 0 | 21 | 28 | 0 | 0.000 | 0.000 | 0.000 | 0.071 | 0.107 | 0.071 | 0.000 | 0.750 |
Global | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 5 | 9 | 0 | 0.000 | 0.000 | 0.000 | 0.111 | 0.333 | 0.000 | 0.000 | 0.556 |
Undefined Extent | 0 | 0 | 0 | 2 | 2 | 5 | 2 | 2 | 100 | 113 | 0 | 0.000 | 0.000 | 0.018 | 0.018 | 0.044 | 0.018 | 0.018 | 0.885 |
7.6.2 Without Undefined
- Again Global is qualitatively different (only Decades and Years studies)
- Continental has nothing shorter than Years
- National and Regional extents have large proportions of Decadal studies
- Micro and Mini extents have largest proprtions of Monthly and Weekly studies
Spatial | Hours | Days | Weeks | Months | Years | Decades | Centuries | Longer | Total | Hours_prop | Days_prop | Weeks_prop | Months_prop | Years_prop | Decades_prop | Centuries_prop | Longer_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 0 | 0 | 2 | 6 | 8 | 2 | 0 | 0 | 18 | 0 | 0.00 | 0.111 | 0.333 | 0.444 | 0.111 | 0.000 | 0.000 |
Mini | 0 | 0 | 2 | 6 | 19 | 15 | 3 | 0 | 45 | 0 | 0.00 | 0.044 | 0.133 | 0.422 | 0.333 | 0.067 | 0.000 |
Local | 0 | 1 | 1 | 14 | 31 | 38 | 11 | 2 | 98 | 0 | 0.01 | 0.010 | 0.143 | 0.316 | 0.388 | 0.112 | 0.020 |
Regional | 0 | 0 | 1 | 3 | 13 | 33 | 5 | 3 | 58 | 0 | 0.00 | 0.017 | 0.052 | 0.224 | 0.569 | 0.086 | 0.052 |
National | 0 | 0 | 0 | 0 | 14 | 38 | 3 | 2 | 57 | 0 | 0.00 | 0.000 | 0.000 | 0.246 | 0.667 | 0.053 | 0.035 |
Continental | 0 | 0 | 0 | 0 | 2 | 3 | 2 | 0 | 7 | 0 | 0.00 | 0.000 | 0.000 | 0.286 | 0.429 | 0.286 | 0.000 |
Global | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 4 | 0 | 0.00 | 0.000 | 0.000 | 0.250 | 0.750 | 0.000 | 0.000 |
Undefined Extent | 0 | 0 | 0 | 2 | 2 | 5 | 2 | 2 | 13 | 0 | 0.00 | 0.000 | 0.154 | 0.154 | 0.385 | 0.154 | 0.154 |
7.7 Concepts
General observations:
- Global extents have largest proportions of Ecosystem Services and Climate Change studies
- Continental and National extents have largest proportions of LUCC studies
- Micro extent have largest proportion of Pattern-Process-Scale studies
conceptCounts <- spatdata %>%
select(Spatial, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(sum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(Total = rowSums(.[2:11])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | PPS of landscapes | Connectivity and fragmentation | Scale and scaling | Spatial analysis and modeling | LUCC | History and legacy | Climate change interactions | Ecosystem services | Landscape sustainability | Accuracy and uncertainty | Total | PPS of landscapes_prop | Connectivity and fragmentation_prop | Scale and scaling_prop | Spatial analysis and modeling_prop | LUCC_prop | History and legacy_prop | Climate change interactions_prop | Ecosystem services_prop | Landscape sustainability_prop | Accuracy and uncertainty_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 11 | 7 | 6 | 7 | 7 | 0 | 0 | 1 | 0 | 0 | 39 | 0.282 | 0.179 | 0.154 | 0.179 | 0.179 | 0.000 | 0.000 | 0.026 | 0.000 | 0.000 |
Mini | 20 | 25 | 12 | 16 | 20 | 8 | 4 | 6 | 7 | 1 | 119 | 0.168 | 0.210 | 0.101 | 0.134 | 0.168 | 0.067 | 0.034 | 0.050 | 0.059 | 0.008 |
Local | 33 | 71 | 18 | 67 | 73 | 25 | 15 | 33 | 27 | 2 | 364 | 0.091 | 0.195 | 0.049 | 0.184 | 0.201 | 0.069 | 0.041 | 0.091 | 0.074 | 0.005 |
Regional | 19 | 48 | 10 | 58 | 62 | 30 | 15 | 22 | 27 | 1 | 292 | 0.065 | 0.164 | 0.034 | 0.199 | 0.212 | 0.103 | 0.051 | 0.075 | 0.092 | 0.003 |
National | 12 | 25 | 8 | 31 | 59 | 22 | 8 | 25 | 21 | 2 | 213 | 0.056 | 0.117 | 0.038 | 0.146 | 0.277 | 0.103 | 0.038 | 0.117 | 0.099 | 0.009 |
Continental | 1 | 4 | 2 | 7 | 13 | 5 | 1 | 5 | 6 | 0 | 44 | 0.023 | 0.091 | 0.045 | 0.159 | 0.295 | 0.114 | 0.023 | 0.114 | 0.136 | 0.000 |
Global | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 6 | 2 | 0 | 21 | 0.095 | 0.095 | 0.048 | 0.048 | 0.143 | 0.095 | 0.095 | 0.286 | 0.095 | 0.000 |
Undefined Extent | 16 | 30 | 9 | 21 | 15 | 5 | 5 | 22 | 13 | 1 | 137 | 0.117 | 0.219 | 0.066 | 0.153 | 0.109 | 0.036 | 0.036 | 0.161 | 0.095 | 0.007 |
ggplot(conceptCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Concept", y = "Abstract Count", x="Extent")
ggplot(conceptCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Concept", y = "Proportion", x="Extent")
7.8 Other Concepts
General observations:
- Smallest extents (micro and mini) have smallest proportions of Socio-Economic Dimensions studies and largest proportions of Biodiversity studies
- Consistent proportions of Management and Conservation studies across all extents
otherCounts <- spatdata %>%
select(Spatial, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(sum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(Total = rowSums(.[2:10])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Spatial | Green Infrastructure | Planning and Architecture | Management and Conservation | Cultural Landscapes | Socio-economic Dimensions | Biodiversity | Landscape Assessment | Catchment Based Approach | Invasives Pests Diseases | Total | Green Infrastructure_prop | Planning and Architecture_prop | Management and Conservation_prop | Cultural Landscapes_prop | Socio-economic Dimensions_prop | Biodiversity_prop | Landscape Assessment_prop | Catchment Based Approach_prop | Invasives Pests Diseases_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro | 3 | 2 | 12 | 0 | 1 | 17 | 2 | 1 | 3 | 41 | 0.073 | 0.049 | 0.293 | 0.000 | 0.024 | 0.415 | 0.049 | 0.024 | 0.073 |
Mini | 10 | 8 | 41 | 7 | 7 | 49 | 4 | 3 | 5 | 134 | 0.075 | 0.060 | 0.306 | 0.052 | 0.052 | 0.366 | 0.030 | 0.022 | 0.037 |
Local | 22 | 43 | 109 | 34 | 47 | 81 | 14 | 16 | 1 | 367 | 0.060 | 0.117 | 0.297 | 0.093 | 0.128 | 0.221 | 0.038 | 0.044 | 0.003 |
Regional | 13 | 28 | 89 | 37 | 38 | 70 | 19 | 8 | 2 | 304 | 0.043 | 0.092 | 0.293 | 0.122 | 0.125 | 0.230 | 0.062 | 0.026 | 0.007 |
National | 6 | 28 | 75 | 19 | 25 | 54 | 22 | 3 | 1 | 233 | 0.026 | 0.120 | 0.322 | 0.082 | 0.107 | 0.232 | 0.094 | 0.013 | 0.004 |
Continental | 1 | 2 | 16 | 9 | 6 | 7 | 6 | 0 | 2 | 49 | 0.020 | 0.041 | 0.327 | 0.184 | 0.122 | 0.143 | 0.122 | 0.000 | 0.041 |
Global | 1 | 3 | 7 | 1 | 2 | 6 | 2 | 0 | 0 | 22 | 0.045 | 0.136 | 0.318 | 0.045 | 0.091 | 0.273 | 0.091 | 0.000 | 0.000 |
Undefined Extent | 6 | 22 | 50 | 14 | 25 | 43 | 11 | 4 | 0 | 175 | 0.034 | 0.126 | 0.286 | 0.080 | 0.143 | 0.246 | 0.063 | 0.023 | 0.000 |
ggplot(otherCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")+
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Concept", y = "Abstract Count", x="Extent")
ggplot(otherCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")+
scale_fill_viridis(discrete = TRUE) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
labs(fill="Concept", y = "Proportion", x="Extent")