Chapter 2 Analysis by Conference Year
Bar charts and tables to examine how contributions to conferences have changed over time.
#Load Data
#After slightly cleaning column titles
rm(list=ls())
library(tidyverse)
library(ggplot2)
library(kableExtra)
library(viridis)
path <- "C:/Users/k1076631/Google Drive/Research/Papers/InProgress/ialeUK_25years/QuantAnalysis/Rproject/"
filename <- "ialeUK25_abstracts_anon93.csv"
cpdata <- read_csv(paste0(path,filename))
this_theme <- theme_get() +
theme(legend.title = element_text(size=18),
legend.text = element_text(size = 12),
axis.title = element_text(size = 18),
axis.text = element_text(size = 12))
theme_set(this_theme)
#spec(cpdata)
yrdata <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T)
2.1 Total Conference Contributions
General observations:
- General increase through time to early 2000s then drop but steady through 2010s
summary <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T) %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(count = rowSums(.[2:6])) %>%
select(`Conference Year`, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3))
summary %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | count | prop |
---|---|---|
1992 | 19 | 0.021 |
1993 | 12 | 0.013 |
1994 | 30 | 0.032 |
1995 | 44 | 0.048 |
1996 | 33 | 0.036 |
1997 | 62 | 0.067 |
1998 | 62 | 0.067 |
1999 | 33 | 0.036 |
2000 | 24 | 0.026 |
2001 | 58 | 0.063 |
2002 | 71 | 0.077 |
2004 | 66 | 0.071 |
2005 | 29 | 0.031 |
2006 | 58 | 0.063 |
2008 | 24 | 0.026 |
2009 | 33 | 0.036 |
2010 | 33 | 0.036 |
2011 | 46 | 0.050 |
2012 | 36 | 0.039 |
2014 | 40 | 0.043 |
2015 | 40 | 0.043 |
2016 | 27 | 0.029 |
2017 | 46 | 0.050 |
ggplot(summary, aes(x=`Conference Year`, y=count)) +
geom_bar(stat="identity") +
labs(y = "Abstract Count") +
scale_x_continuous(breaks = scales::pretty_breaks(n = 5))
2.3 Landscape Type
General observations:
- Lowland rural generaly dominates (but lesser contribution in later years)
- Spikes in some years for types (corresponding to special themes)
- Urban and Seascape both appear for first time in 1998; urban then constant presence, but seascape more variable until recent years
lspCounts <- yrdata %>%
select(`Conference Year`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(yrsum = rowSums(.[2:8])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Total = rowSums(.[2:8])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | Upland rural | Lowland rural | Urban | Riverscape | Seascape | Undefined LspType | Other | Total | Conference Year_prop | Upland rural_prop | Lowland rural_prop | Urban_prop | Riverscape_prop | Seascape_prop | Undefined LspType_prop | Other_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 2 | 10 | 0 | 1 | 0 | 5 | 1 | 19 | 104.842 | 0.105 | 0.526 | 0.000 | 0.053 | 0.000 | 0.263 | 0.053 |
1993 | 7 | 8 | 0 | 1 | 1 | 2 | 3 | 22 | 90.591 | 0.318 | 0.364 | 0.000 | 0.045 | 0.045 | 0.091 | 0.136 |
1994 | 3 | 18 | 0 | 1 | 0 | 6 | 1 | 29 | 68.759 | 0.103 | 0.621 | 0.000 | 0.034 | 0.000 | 0.207 | 0.034 |
1995 | 5 | 11 | 0 | 0 | 2 | 15 | 2 | 35 | 57.000 | 0.143 | 0.314 | 0.000 | 0.000 | 0.057 | 0.429 | 0.057 |
1996 | 8 | 14 | 0 | 0 | 1 | 1 | 1 | 25 | 79.840 | 0.320 | 0.560 | 0.000 | 0.000 | 0.040 | 0.040 | 0.040 |
1997 | 10 | 31 | 0 | 4 | 0 | 4 | 3 | 52 | 38.404 | 0.192 | 0.596 | 0.000 | 0.077 | 0.000 | 0.077 | 0.058 |
1998 | 5 | 32 | 4 | 2 | 1 | 4 | 2 | 50 | 39.960 | 0.100 | 0.640 | 0.080 | 0.040 | 0.020 | 0.080 | 0.040 |
1999 | 7 | 23 | 4 | 4 | 1 | 7 | 3 | 49 | 40.796 | 0.143 | 0.469 | 0.082 | 0.082 | 0.020 | 0.143 | 0.061 |
2000 | 7 | 13 | 6 | 3 | 0 | 2 | 0 | 31 | 64.516 | 0.226 | 0.419 | 0.194 | 0.097 | 0.000 | 0.065 | 0.000 |
2001 | 6 | 32 | 3 | 0 | 0 | 9 | 1 | 51 | 39.235 | 0.118 | 0.627 | 0.059 | 0.000 | 0.000 | 0.176 | 0.020 |
2002 | 4 | 39 | 4 | 1 | 3 | 10 | 0 | 61 | 32.820 | 0.066 | 0.639 | 0.066 | 0.016 | 0.049 | 0.164 | 0.000 |
2004 | 7 | 32 | 2 | 1 | 0 | 13 | 5 | 60 | 33.400 | 0.117 | 0.533 | 0.033 | 0.017 | 0.000 | 0.217 | 0.083 |
2005 | 4 | 13 | 3 | 1 | 0 | 0 | 0 | 21 | 95.476 | 0.190 | 0.619 | 0.143 | 0.048 | 0.000 | 0.000 | 0.000 |
2006 | 0 | 7 | 3 | 47 | 0 | 0 | 1 | 58 | 34.586 | 0.000 | 0.121 | 0.052 | 0.810 | 0.000 | 0.000 | 0.017 |
2008 | 3 | 12 | 2 | 3 | 0 | 1 | 0 | 21 | 95.619 | 0.143 | 0.571 | 0.095 | 0.143 | 0.000 | 0.048 | 0.000 |
2009 | 0 | 10 | 2 | 4 | 0 | 10 | 0 | 26 | 77.269 | 0.000 | 0.385 | 0.077 | 0.154 | 0.000 | 0.385 | 0.000 |
2010 | 3 | 10 | 0 | 2 | 4 | 0 | 0 | 19 | 105.789 | 0.158 | 0.526 | 0.000 | 0.105 | 0.211 | 0.000 | 0.000 |
2011 | 6 | 10 | 6 | 7 | 1 | 10 | 1 | 41 | 49.049 | 0.146 | 0.244 | 0.146 | 0.171 | 0.024 | 0.244 | 0.024 |
2012 | 11 | 8 | 4 | 3 | 5 | 12 | 1 | 44 | 45.727 | 0.250 | 0.182 | 0.091 | 0.068 | 0.114 | 0.273 | 0.023 |
2014 | 0 | 5 | 38 | 6 | 2 | 1 | 0 | 52 | 38.731 | 0.000 | 0.096 | 0.731 | 0.115 | 0.038 | 0.019 | 0.000 |
2015 | 1 | 2 | 3 | 2 | 38 | 0 | 1 | 47 | 42.872 | 0.021 | 0.043 | 0.064 | 0.043 | 0.809 | 0.000 | 0.021 |
2016 | 7 | 8 | 4 | 1 | 4 | 12 | 0 | 36 | 56.000 | 0.194 | 0.222 | 0.111 | 0.028 | 0.111 | 0.333 | 0.000 |
2017 | 8 | 15 | 2 | 2 | 5 | 12 | 0 | 44 | 45.841 | 0.182 | 0.341 | 0.045 | 0.045 | 0.114 | 0.273 | 0.000 |
factor_order <- c('Upland rural', 'Lowland rural', 'Urban', 'Riverscape', 'Seascape', 'Undefined LspType','Other')
factor_labels <- c('Upland rural', 'Lowland rural', 'Urban', 'Riverscape', 'Seascape', 'Undefined','Other')
ggplot(lspCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Lsp Type", y = "Abstract Count")
ggplot(lspCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Lsp Type", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))
2.4 Organism
General observations:
- No clear patterns
- Some years contain no Generic Habitat
sppCounts <- yrdata %>%
select(`Conference Year`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Total = rowSums(.[2:11])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | Mammals | Humans | Birds | Reptiles | Inverts | Plants | Amphibians | Fish | Generic Habitat | Woodland Forests | Total | Conference Year_prop | Mammals_prop | Humans_prop | Birds_prop | Reptiles_prop | Inverts_prop | Plants_prop | Amphibians_prop | Fish_prop | Generic Habitat_prop | Woodland Forests_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 0 | 0 | 3 | 0 | 5 | 1 | 0 | 0 | 4 | 3 | 16 | 124.500 | 0.000 | 0.000 | 0.188 | 0.000 | 0.312 | 0.062 | 0.000 | 0.000 | 0.250 | 0.188 |
1993 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 9 | 3 | 20 | 99.650 | 0.050 | 0.150 | 0.050 | 0.050 | 0.000 | 0.050 | 0.050 | 0.000 | 0.450 | 0.150 |
1994 | 2 | 0 | 5 | 0 | 5 | 2 | 1 | 0 | 3 | 3 | 21 | 94.952 | 0.095 | 0.000 | 0.238 | 0.000 | 0.238 | 0.095 | 0.048 | 0.000 | 0.143 | 0.143 |
1995 | 2 | 0 | 2 | 0 | 5 | 3 | 1 | 0 | 9 | 6 | 28 | 71.250 | 0.071 | 0.000 | 0.071 | 0.000 | 0.179 | 0.107 | 0.036 | 0.000 | 0.321 | 0.214 |
1996 | 2 | 0 | 5 | 1 | 4 | 9 | 1 | 1 | 3 | 4 | 30 | 66.533 | 0.067 | 0.000 | 0.167 | 0.033 | 0.133 | 0.300 | 0.033 | 0.033 | 0.100 | 0.133 |
1997 | 1 | 0 | 5 | 0 | 14 | 23 | 1 | 0 | 5 | 3 | 52 | 38.404 | 0.019 | 0.000 | 0.096 | 0.000 | 0.269 | 0.442 | 0.019 | 0.000 | 0.096 | 0.058 |
1998 | 2 | 0 | 2 | 0 | 4 | 9 | 1 | 0 | 24 | 10 | 52 | 38.423 | 0.038 | 0.000 | 0.038 | 0.000 | 0.077 | 0.173 | 0.019 | 0.000 | 0.462 | 0.192 |
1999 | 4 | 0 | 4 | 0 | 7 | 3 | 1 | 0 | 20 | 8 | 47 | 42.532 | 0.085 | 0.000 | 0.085 | 0.000 | 0.149 | 0.064 | 0.021 | 0.000 | 0.426 | 0.170 |
2000 | 1 | 3 | 3 | 0 | 4 | 5 | 1 | 0 | 6 | 2 | 25 | 80.000 | 0.040 | 0.120 | 0.120 | 0.000 | 0.160 | 0.200 | 0.040 | 0.000 | 0.240 | 0.080 |
2001 | 3 | 0 | 7 | 1 | 7 | 15 | 0 | 0 | 29 | 5 | 67 | 29.866 | 0.045 | 0.000 | 0.104 | 0.015 | 0.104 | 0.224 | 0.000 | 0.000 | 0.433 | 0.075 |
2002 | 0 | 1 | 57 | 0 | 1 | 1 | 0 | 0 | 0 | 16 | 76 | 26.342 | 0.000 | 0.013 | 0.750 | 0.000 | 0.013 | 0.013 | 0.000 | 0.000 | 0.000 | 0.211 |
2004 | 7 | 0 | 8 | 0 | 9 | 8 | 0 | 0 | 1 | 47 | 80 | 25.050 | 0.088 | 0.000 | 0.100 | 0.000 | 0.112 | 0.100 | 0.000 | 0.000 | 0.012 | 0.588 |
2005 | 0 | 5 | 4 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 14 | 143.214 | 0.000 | 0.357 | 0.286 | 0.000 | 0.071 | 0.286 | 0.000 | 0.000 | 0.000 | 0.000 |
2006 | 1 | 2 | 2 | 0 | 12 | 5 | 2 | 1 | 25 | 1 | 51 | 39.333 | 0.020 | 0.039 | 0.039 | 0.000 | 0.235 | 0.098 | 0.039 | 0.020 | 0.490 | 0.020 |
2008 | 3 | 0 | 3 | 0 | 0 | 2 | 0 | 1 | 9 | 4 | 22 | 91.273 | 0.136 | 0.000 | 0.136 | 0.000 | 0.000 | 0.091 | 0.000 | 0.045 | 0.409 | 0.182 |
2009 | 3 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 7 | 7 | 21 | 95.667 | 0.143 | 0.000 | 0.048 | 0.000 | 0.095 | 0.000 | 0.000 | 0.048 | 0.333 | 0.333 |
2010 | 4 | 3 | 2 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 19 | 105.789 | 0.211 | 0.158 | 0.105 | 0.000 | 0.158 | 0.368 | 0.000 | 0.000 | 0.000 | 0.000 |
2011 | 1 | 0 | 3 | 0 | 4 | 3 | 0 | 0 | 0 | 3 | 14 | 143.643 | 0.071 | 0.000 | 0.214 | 0.000 | 0.286 | 0.214 | 0.000 | 0.000 | 0.000 | 0.214 |
2012 | 4 | 12 | 5 | 2 | 5 | 6 | 0 | 0 | 8 | 10 | 52 | 38.692 | 0.077 | 0.231 | 0.096 | 0.038 | 0.096 | 0.115 | 0.000 | 0.000 | 0.154 | 0.192 |
2014 | 1 | 9 | 0 | 0 | 3 | 3 | 1 | 2 | 23 | 3 | 45 | 44.756 | 0.022 | 0.200 | 0.000 | 0.000 | 0.067 | 0.067 | 0.022 | 0.044 | 0.511 | 0.067 |
2015 | 0 | 17 | 3 | 0 | 4 | 0 | 0 | 4 | 13 | 0 | 41 | 49.146 | 0.000 | 0.415 | 0.073 | 0.000 | 0.098 | 0.000 | 0.000 | 0.098 | 0.317 | 0.000 |
2016 | 0 | 11 | 0 | 0 | 2 | 0 | 0 | 0 | 20 | 0 | 33 | 61.091 | 0.000 | 0.333 | 0.000 | 0.000 | 0.061 | 0.000 | 0.000 | 0.000 | 0.606 | 0.000 |
2017 | 1 | 13 | 3 | 0 | 3 | 9 | 0 | 1 | 10 | 15 | 55 | 36.673 | 0.018 | 0.236 | 0.055 | 0.000 | 0.055 | 0.164 | 0.000 | 0.018 | 0.182 | 0.273 |
factor_order <- c('Amphibians', 'Birds', 'Fish','Woodland Forests','Generic Habitat', 'Humans','Inverts','Mammals','Plants','Reptiles')
factor_labels <- c('Amphibians', 'Birds', 'Fish','Forests','Generic Habitat', 'Humans','Inverts','Mammals','Plants','Reptiles')
ggplot(sppCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Organism", y = "Abstract Count")
ggplot(sppCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Organism", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))
2.5 Methods
General observations:
- Empirical studies have decreased through time
- GIS and qualitative have increased through time
- Quantitative and theoretical quite steady through time (although theoretical does seem to have reduced after initial years)
methodsCounts <- yrdata %>%
select(`Conference Year`, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(yrsum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Total = rowSums(.[2:7])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | Empirical | Theoretical | Qualitative | Quantitative | GIS | Remote sensing | Total | Conference Year_prop | Empirical_prop | Theoretical_prop | Qualitative_prop | Quantitative_prop | GIS_prop | Remote sensing_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 10 | 7 | 1 | 1 | 1 | 1 | 21 | 94.857 | 0.476 | 0.333 | 0.048 | 0.048 | 0.048 | 0.048 |
1993 | 1 | 0 | 9 | 7 | 0 | 1 | 18 | 110.722 | 0.056 | 0.000 | 0.500 | 0.389 | 0.000 | 0.056 |
1994 | 14 | 9 | 2 | 9 | 2 | 1 | 37 | 53.892 | 0.378 | 0.243 | 0.054 | 0.243 | 0.054 | 0.027 |
1995 | 15 | 13 | 2 | 9 | 4 | 1 | 44 | 45.341 | 0.341 | 0.295 | 0.045 | 0.205 | 0.091 | 0.023 |
1996 | 14 | 7 | 0 | 7 | 1 | 1 | 30 | 66.533 | 0.467 | 0.233 | 0.000 | 0.233 | 0.033 | 0.033 |
1997 | 40 | 2 | 0 | 1 | 12 | 0 | 55 | 36.309 | 0.727 | 0.036 | 0.000 | 0.018 | 0.218 | 0.000 |
1998 | 27 | 7 | 2 | 11 | 17 | 3 | 67 | 29.821 | 0.403 | 0.104 | 0.030 | 0.164 | 0.254 | 0.045 |
1999 | 25 | 11 | 2 | 24 | 10 | 6 | 78 | 25.628 | 0.321 | 0.141 | 0.026 | 0.308 | 0.128 | 0.077 |
2000 | 15 | 3 | 2 | 16 | 4 | 4 | 44 | 45.455 | 0.341 | 0.068 | 0.045 | 0.364 | 0.091 | 0.091 |
2001 | 36 | 5 | 11 | 32 | 2 | 1 | 87 | 23.000 | 0.414 | 0.057 | 0.126 | 0.368 | 0.023 | 0.011 |
2002 | 43 | 6 | 3 | 41 | 7 | 5 | 105 | 19.067 | 0.410 | 0.057 | 0.029 | 0.390 | 0.067 | 0.048 |
2004 | 35 | 25 | 13 | 46 | 12 | 0 | 131 | 15.298 | 0.267 | 0.191 | 0.099 | 0.351 | 0.092 | 0.000 |
2005 | 5 | 4 | 10 | 7 | 8 | 1 | 35 | 57.286 | 0.143 | 0.114 | 0.286 | 0.200 | 0.229 | 0.029 |
2006 | 23 | 6 | 7 | 18 | 14 | 1 | 69 | 29.072 | 0.333 | 0.087 | 0.101 | 0.261 | 0.203 | 0.014 |
2008 | 4 | 3 | 3 | 9 | 7 | 0 | 26 | 77.231 | 0.154 | 0.115 | 0.115 | 0.346 | 0.269 | 0.000 |
2009 | 9 | 8 | 6 | 6 | 10 | 0 | 39 | 51.513 | 0.231 | 0.205 | 0.154 | 0.154 | 0.256 | 0.000 |
2010 | 6 | 3 | 5 | 8 | 5 | 0 | 27 | 74.444 | 0.222 | 0.111 | 0.185 | 0.296 | 0.185 | 0.000 |
2011 | 9 | 7 | 9 | 12 | 7 | 0 | 44 | 45.705 | 0.205 | 0.159 | 0.205 | 0.273 | 0.159 | 0.000 |
2012 | 11 | 8 | 10 | 15 | 11 | 2 | 57 | 35.298 | 0.193 | 0.140 | 0.175 | 0.263 | 0.193 | 0.035 |
2014 | 6 | 10 | 14 | 23 | 13 | 4 | 70 | 28.771 | 0.086 | 0.143 | 0.200 | 0.329 | 0.186 | 0.057 |
2015 | 9 | 10 | 17 | 15 | 8 | 2 | 61 | 33.033 | 0.148 | 0.164 | 0.279 | 0.246 | 0.131 | 0.033 |
2016 | 5 | 7 | 14 | 13 | 14 | 2 | 55 | 36.655 | 0.091 | 0.127 | 0.255 | 0.236 | 0.255 | 0.036 |
2017 | 13 | 17 | 12 | 21 | 16 | 5 | 84 | 24.012 | 0.155 | 0.202 | 0.143 | 0.250 | 0.190 | 0.060 |
factor_order <- c('Empirical', 'GIS', 'Qualitative', 'Quantitative', 'Remote sensing', 'Theoretical')
factor_labels <- c('Empirical', 'GIS', 'Qualitative', 'Quantitative', 'RS', 'Theoretical')
ggplot(methodsCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Method", y = "Abstract Count")
ggplot(methodsCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Method", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))
2.6 Spatial Extent
General observations:
- Studies at ‘intermediate’ spatial extents dominate
- Global studies only appear from 2014 onwards
extentCounts <- yrdata %>%
select(`Conference Year`, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(yrsum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Total = rowSums(.[2:9])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | Micro | Mini | Local | Regional | National | Continental | Global | Undefined Extent | Total | Conference Year_prop | Micro_prop | Mini_prop | Local_prop | Regional_prop | National_prop | Continental_prop | Global_prop | Undefined Extent_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 0 | 6 | 3 | 0 | 7 | 1 | 0 | 2 | 19 | 104.842 | 0.000 | 0.316 | 0.158 | 0.000 | 0.368 | 0.053 | 0.000 | 0.105 |
1993 | 0 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 15 | 132.867 | 0.000 | 0.133 | 0.267 | 0.267 | 0.067 | 0.133 | 0.067 | 0.067 |
1994 | 2 | 7 | 6 | 9 | 1 | 2 | 0 | 3 | 30 | 66.467 | 0.067 | 0.233 | 0.200 | 0.300 | 0.033 | 0.067 | 0.000 | 0.100 |
1995 | 2 | 5 | 5 | 7 | 10 | 0 | 0 | 7 | 36 | 55.417 | 0.056 | 0.139 | 0.139 | 0.194 | 0.278 | 0.000 | 0.000 | 0.194 |
1996 | 2 | 5 | 8 | 3 | 8 | 0 | 0 | 1 | 27 | 73.926 | 0.074 | 0.185 | 0.296 | 0.111 | 0.296 | 0.000 | 0.000 | 0.037 |
1997 | 9 | 12 | 15 | 2 | 5 | 1 | 0 | 3 | 47 | 42.489 | 0.191 | 0.255 | 0.319 | 0.043 | 0.106 | 0.021 | 0.000 | 0.064 |
1998 | 3 | 4 | 21 | 12 | 6 | 2 | 0 | 6 | 54 | 37.000 | 0.056 | 0.074 | 0.389 | 0.222 | 0.111 | 0.037 | 0.000 | 0.111 |
1999 | 3 | 3 | 5 | 5 | 6 | 1 | 0 | 9 | 32 | 62.469 | 0.094 | 0.094 | 0.156 | 0.156 | 0.188 | 0.031 | 0.000 | 0.281 |
2000 | 2 | 4 | 2 | 8 | 3 | 0 | 0 | 2 | 21 | 95.238 | 0.095 | 0.190 | 0.095 | 0.381 | 0.143 | 0.000 | 0.000 | 0.095 |
2001 | 0 | 7 | 7 | 12 | 11 | 3 | 0 | 5 | 45 | 44.467 | 0.000 | 0.156 | 0.156 | 0.267 | 0.244 | 0.067 | 0.000 | 0.111 |
2002 | 1 | 7 | 17 | 11 | 6 | 3 | 0 | 11 | 56 | 35.750 | 0.018 | 0.125 | 0.304 | 0.196 | 0.107 | 0.054 | 0.000 | 0.196 |
2004 | 0 | 4 | 13 | 21 | 12 | 2 | 0 | 10 | 62 | 32.323 | 0.000 | 0.065 | 0.210 | 0.339 | 0.194 | 0.032 | 0.000 | 0.161 |
2005 | 3 | 1 | 10 | 6 | 6 | 1 | 0 | 0 | 27 | 74.259 | 0.111 | 0.037 | 0.370 | 0.222 | 0.222 | 0.037 | 0.000 | 0.000 |
2006 | 3 | 11 | 11 | 10 | 8 | 1 | 0 | 15 | 59 | 34.000 | 0.051 | 0.186 | 0.186 | 0.169 | 0.136 | 0.017 | 0.000 | 0.254 |
2008 | 0 | 0 | 9 | 6 | 3 | 1 | 0 | 0 | 19 | 105.684 | 0.000 | 0.000 | 0.474 | 0.316 | 0.158 | 0.053 | 0.000 | 0.000 |
2009 | 0 | 0 | 11 | 5 | 1 | 0 | 0 | 9 | 26 | 77.269 | 0.000 | 0.000 | 0.423 | 0.192 | 0.038 | 0.000 | 0.000 | 0.346 |
2010 | 0 | 1 | 3 | 6 | 6 | 1 | 0 | 0 | 17 | 118.235 | 0.000 | 0.059 | 0.176 | 0.353 | 0.353 | 0.059 | 0.000 | 0.000 |
2011 | 0 | 5 | 15 | 4 | 4 | 0 | 0 | 11 | 39 | 51.564 | 0.000 | 0.128 | 0.385 | 0.103 | 0.103 | 0.000 | 0.000 | 0.282 |
2012 | 0 | 4 | 9 | 15 | 8 | 1 | 0 | 2 | 39 | 51.590 | 0.000 | 0.103 | 0.231 | 0.385 | 0.205 | 0.026 | 0.000 | 0.051 |
2014 | 2 | 4 | 24 | 2 | 3 | 0 | 2 | 4 | 41 | 49.122 | 0.049 | 0.098 | 0.585 | 0.049 | 0.073 | 0.000 | 0.049 | 0.098 |
2015 | 1 | 2 | 10 | 8 | 8 | 1 | 2 | 7 | 39 | 51.667 | 0.026 | 0.051 | 0.256 | 0.205 | 0.205 | 0.026 | 0.051 | 0.179 |
2016 | 1 | 1 | 10 | 9 | 8 | 4 | 1 | 6 | 40 | 50.400 | 0.025 | 0.025 | 0.250 | 0.225 | 0.200 | 0.100 | 0.025 | 0.150 |
2017 | 2 | 6 | 17 | 7 | 16 | 2 | 3 | 1 | 54 | 37.352 | 0.037 | 0.111 | 0.315 | 0.130 | 0.296 | 0.037 | 0.056 | 0.019 |
factor_order <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined Extent')
factor_labels <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined')
ggplot(extentCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Spatial", y = "Abstract Count")
ggplot(extentCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Spatial", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))
2.7 Temporal Extent
General observations:
- Most studies have undefined temporal duration
- Those that do are dominated by studies over decades and years
Conference Year Hours Days Weeks Months Years Decades Centuries Longer Undefined Temporal Total Conference Year_prop Hours_prop Days_prop Weeks_prop Months_prop Years_prop Decades_prop Centuries_prop Longer_prop Undefined Temporal_prop 1992 0 0 0 1 3 3 0 0 11 18 110.667 0 0.000 0.000 0.056 0.167 0.167 0.000 0.000 0.611 1993 0 0 0 0 1 1 0 0 10 12 166.083 0 0.000 0.000 0.000 0.083 0.083 0.000 0.000 0.833 1994 0 0 0 1 1 3 2 1 19 27 73.852 0 0.000 0.000 0.037 0.037 0.111 0.074 0.037 0.704 1995 0 1 0 0 2 1 0 0 27 31 64.355 0 0.032 0.000 0.000 0.065 0.032 0.000 0.000 0.871 1996 0 0 0 1 2 8 1 0 10 22 90.727 0 0.000 0.000 0.045 0.091 0.364 0.045 0.000 0.455 1997 0 0 0 3 7 5 3 0 26 44 45.386 0 0.000 0.000 0.068 0.159 0.114 0.068 0.000 0.591 1998 0 0 0 0 2 11 1 1 29 44 45.409 0 0.000 0.000 0.000 0.045 0.250 0.023 0.023 0.659 1999 0 0 1 2 3 3 1 0 23 33 60.576 0 0.000 0.030 0.061 0.091 0.091 0.030 0.000 0.697 2000 0 0 0 0 2 5 0 0 13 20 100.000 0 0.000 0.000 0.000 0.100 0.250 0.000 0.000 0.650 2001 0 0 0 1 3 4 2 1 33 44 45.477 0 0.000 0.000 0.023 0.068 0.091 0.045 0.023 0.750 2002 0 0 0 3 3 4 1 0 46 57 35.123 0 0.000 0.000 0.053 0.053 0.070 0.018 0.000 0.807 2004 0 0 0 0 4 6 2 0 45 57 35.158 0 0.000 0.000 0.000 0.070 0.105 0.035 0.000 0.789 2005 0 0 0 2 1 3 0 0 0 6 334.167 0 0.000 0.000 0.333 0.167 0.500 0.000 0.000 0.000 2006 0 0 2 1 8 6 3 2 34 56 35.821 0 0.000 0.036 0.018 0.143 0.107 0.054 0.036 0.607 2008 0 0 0 0 0 5 1 0 14 20 100.400 0 0.000 0.000 0.000 0.000 0.250 0.050 0.000 0.700 2009 0 0 0 0 0 0 0 0 26 26 77.269 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 2010 0 0 0 0 1 4 2 1 0 8 251.250 0 0.000 0.000 0.000 0.125 0.500 0.250 0.125 0.000 2011 0 0 0 1 2 2 1 1 32 39 51.564 0 0.000 0.000 0.026 0.051 0.051 0.026 0.026 0.821 2012 0 0 0 2 6 21 0 0 2 31 64.903 0 0.000 0.000 0.065 0.194 0.677 0.000 0.000 0.065 2014 0 0 0 4 8 4 2 0 22 40 50.350 0 0.000 0.000 0.100 0.200 0.100 0.050 0.000 0.550 2015 0 0 0 0 4 2 0 0 32 38 53.026 0 0.000 0.000 0.000 0.105 0.053 0.000 0.000 0.842 2016 0 0 0 0 1 3 0 0 22 26 77.538 0 0.000 0.000 0.000 0.038 0.115 0.000 0.000 0.846 2017 0 0 0 4 10 19 3 2 11 49 41.163 0 0.000 0.000 0.082 0.204 0.388 0.061 0.041 0.224
2.8 Concepts
General observations:
- Ecosystem services appear from 1998 and have grown recently
- Climate change interactions have only become common recently (since 2008)
- ‘Scale and scaling’ and ’connectivity and fragmentation seem to have decreased in recent years
- LUCC and Spatial Analysis are mainstays throughout
conceptCounts <- yrdata %>%
select(`Conference Year`, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(Total = rowSums(.[2:11])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | PPS of landscapes | Connectivity and fragmentation | Scale and scaling | Spatial analysis and modeling | LUCC | History and legacy | Climate change interactions | Ecosystem services | Landscape sustainability | Accuracy and uncertainty | Total | Conference Year_prop | PPS of landscapes_prop | Connectivity and fragmentation_prop | Scale and scaling_prop | Spatial analysis and modeling_prop | LUCC_prop | History and legacy_prop | Climate change interactions_prop | Ecosystem services_prop | Landscape sustainability_prop | Accuracy and uncertainty_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 3 | 8 | 1 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 17 | 117.176 | 0.176 | 0.471 | 0.059 | 0.000 | 0.235 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 |
1993 | 0 | 0 | 0 | 0 | 10 | 10 | 0 | 0 | 7 | 0 | 27 | 73.815 | 0.000 | 0.000 | 0.000 | 0.000 | 0.370 | 0.370 | 0.000 | 0.000 | 0.259 | 0.000 |
1994 | 1 | 13 | 1 | 4 | 7 | 4 | 0 | 0 | 0 | 0 | 30 | 66.467 | 0.033 | 0.433 | 0.033 | 0.133 | 0.233 | 0.133 | 0.000 | 0.000 | 0.000 | 0.000 |
1995 | 3 | 3 | 3 | 2 | 5 | 0 | 0 | 0 | 8 | 0 | 24 | 83.125 | 0.125 | 0.125 | 0.125 | 0.083 | 0.208 | 0.000 | 0.000 | 0.000 | 0.333 | 0.000 |
1996 | 5 | 4 | 3 | 4 | 9 | 1 | 1 | 0 | 2 | 0 | 29 | 68.828 | 0.172 | 0.138 | 0.103 | 0.138 | 0.310 | 0.034 | 0.034 | 0.000 | 0.069 | 0.000 |
1997 | 10 | 15 | 4 | 5 | 14 | 1 | 0 | 0 | 0 | 0 | 49 | 40.755 | 0.204 | 0.306 | 0.082 | 0.102 | 0.286 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
1998 | 6 | 16 | 0 | 9 | 20 | 0 | 0 | 0 | 2 | 0 | 53 | 37.698 | 0.113 | 0.302 | 0.000 | 0.170 | 0.377 | 0.000 | 0.000 | 0.000 | 0.038 | 0.000 |
1999 | 6 | 8 | 5 | 6 | 7 | 2 | 0 | 1 | 2 | 0 | 37 | 54.027 | 0.162 | 0.216 | 0.135 | 0.162 | 0.189 | 0.054 | 0.000 | 0.027 | 0.054 | 0.000 |
2000 | 2 | 3 | 4 | 4 | 8 | 0 | 0 | 1 | 1 | 0 | 23 | 86.957 | 0.087 | 0.130 | 0.174 | 0.174 | 0.348 | 0.000 | 0.000 | 0.043 | 0.043 | 0.000 |
2001 | 5 | 11 | 0 | 3 | 11 | 13 | 0 | 0 | 4 | 1 | 48 | 41.688 | 0.104 | 0.229 | 0.000 | 0.062 | 0.229 | 0.271 | 0.000 | 0.000 | 0.083 | 0.021 |
2002 | 9 | 14 | 8 | 22 | 13 | 4 | 0 | 0 | 6 | 0 | 76 | 26.342 | 0.118 | 0.184 | 0.105 | 0.289 | 0.171 | 0.053 | 0.000 | 0.000 | 0.079 | 0.000 |
2004 | 3 | 25 | 0 | 19 | 15 | 9 | 3 | 1 | 12 | 0 | 87 | 23.034 | 0.034 | 0.287 | 0.000 | 0.218 | 0.172 | 0.103 | 0.034 | 0.011 | 0.138 | 0.000 |
2005 | 3 | 13 | 0 | 7 | 4 | 2 | 0 | 1 | 12 | 0 | 42 | 47.738 | 0.071 | 0.310 | 0.000 | 0.167 | 0.095 | 0.048 | 0.000 | 0.024 | 0.286 | 0.000 |
2006 | 11 | 8 | 6 | 12 | 19 | 9 | 2 | 3 | 4 | 1 | 75 | 26.747 | 0.147 | 0.107 | 0.080 | 0.160 | 0.253 | 0.120 | 0.027 | 0.040 | 0.053 | 0.013 |
2008 | 0 | 9 | 1 | 5 | 3 | 2 | 0 | 0 | 1 | 1 | 22 | 91.273 | 0.000 | 0.409 | 0.045 | 0.227 | 0.136 | 0.091 | 0.000 | 0.000 | 0.045 | 0.045 |
2009 | 0 | 19 | 0 | 9 | 1 | 0 | 3 | 1 | 1 | 0 | 34 | 59.088 | 0.000 | 0.559 | 0.000 | 0.265 | 0.029 | 0.000 | 0.088 | 0.029 | 0.029 | 0.000 |
2010 | 2 | 2 | 0 | 3 | 5 | 2 | 5 | 2 | 2 | 0 | 23 | 87.391 | 0.087 | 0.087 | 0.000 | 0.130 | 0.217 | 0.087 | 0.217 | 0.087 | 0.087 | 0.000 |
2011 | 0 | 3 | 1 | 6 | 7 | 1 | 6 | 26 | 2 | 0 | 52 | 38.673 | 0.000 | 0.058 | 0.019 | 0.115 | 0.135 | 0.019 | 0.115 | 0.500 | 0.038 | 0.000 |
2012 | 9 | 9 | 6 | 6 | 16 | 6 | 4 | 16 | 11 | 1 | 84 | 23.952 | 0.107 | 0.107 | 0.071 | 0.071 | 0.190 | 0.071 | 0.048 | 0.190 | 0.131 | 0.012 |
2014 | 10 | 5 | 3 | 16 | 9 | 2 | 7 | 17 | 4 | 0 | 73 | 27.589 | 0.137 | 0.068 | 0.041 | 0.219 | 0.123 | 0.027 | 0.096 | 0.233 | 0.055 | 0.000 |
2015 | 6 | 10 | 3 | 7 | 5 | 5 | 7 | 14 | 8 | 0 | 65 | 31.000 | 0.092 | 0.154 | 0.046 | 0.108 | 0.077 | 0.077 | 0.108 | 0.215 | 0.123 | 0.000 |
2016 | 4 | 0 | 3 | 14 | 11 | 5 | 2 | 12 | 2 | 1 | 54 | 37.333 | 0.074 | 0.000 | 0.056 | 0.259 | 0.204 | 0.093 | 0.037 | 0.222 | 0.037 | 0.019 |
2017 | 7 | 7 | 2 | 16 | 21 | 11 | 5 | 13 | 6 | 1 | 89 | 22.663 | 0.079 | 0.079 | 0.022 | 0.180 | 0.236 | 0.124 | 0.056 | 0.146 | 0.067 | 0.011 |
factor_order <- c('PPS of landscapes',
'Connectivity and fragmentation', 'Scale and scaling','Spatial analysis and modeling','LUCC','History and legacy','Accuracy and uncertainty','Climate change interactions','Ecosystem services','Landscape sustainability')
factor_labels <- c('Pat-Proc-Scale', 'Conn & Frag', 'Scale/ing', 'SA & Modelling', 'LUCC', 'History','Acc & Uncertainty','Climate Change','Eco Services','Sustainability')
ggplot(conceptCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Concept", y = "Abstract Count")
ggplot(conceptCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Concept", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))
2.9 Other Concepts
General observations:
- Socio-economic studies have increased through time
- Biodiversity has decreased through time
- Landscape management and Biodiversity peak in early 2000s
othCCounts <- yrdata %>%
select(`Conference Year`, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
yrdata %>%
select(`Conference Year`, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(Total = rowSums(.[2:10])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%", height= "400px")
Conference Year | Green Infrastructure | Planning and Architecture | Management and Conservation | Cultural Landscapes | Socio-economic Dimensions | Biodiversity | Landscape Assessment | Catchment Based Approach | Invasives Pests Diseases | Total | Conference Year_prop | Green Infrastructure_prop | Planning and Architecture_prop | Management and Conservation_prop | Cultural Landscapes_prop | Socio-economic Dimensions_prop | Biodiversity_prop | Landscape Assessment_prop | Catchment Based Approach_prop | Invasives Pests Diseases_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 0 | 0 | 3 | 0 | 1 | 6 | 1 | 1 | 0 | 12 | 166.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.083 | 0.500 | 0.083 | 0.083 | 0.000 |
1993 | 0 | 0 | 6 | 11 | 6 | 2 | 5 | 0 | 0 | 30 | 66.433 | 0.000 | 0.000 | 0.200 | 0.367 | 0.200 | 0.067 | 0.167 | 0.000 | 0.000 |
1994 | 0 | 0 | 8 | 1 | 0 | 5 | 2 | 0 | 0 | 16 | 124.625 | 0.000 | 0.000 | 0.500 | 0.062 | 0.000 | 0.312 | 0.125 | 0.000 | 0.000 |
1995 | 0 | 4 | 12 | 3 | 1 | 7 | 1 | 0 | 0 | 28 | 71.250 | 0.000 | 0.143 | 0.429 | 0.107 | 0.036 | 0.250 | 0.036 | 0.000 | 0.000 |
1996 | 1 | 0 | 5 | 3 | 1 | 10 | 0 | 0 | 0 | 20 | 99.800 | 0.050 | 0.000 | 0.250 | 0.150 | 0.050 | 0.500 | 0.000 | 0.000 | 0.000 |
1997 | 0 | 0 | 24 | 0 | 1 | 13 | 1 | 0 | 3 | 42 | 47.548 | 0.000 | 0.000 | 0.571 | 0.000 | 0.024 | 0.310 | 0.024 | 0.000 | 0.071 |
1998 | 0 | 0 | 9 | 2 | 0 | 5 | 3 | 5 | 1 | 25 | 79.920 | 0.000 | 0.000 | 0.360 | 0.080 | 0.000 | 0.200 | 0.120 | 0.200 | 0.040 |
1999 | 0 | 3 | 4 | 2 | 0 | 17 | 7 | 1 | 1 | 35 | 57.114 | 0.000 | 0.086 | 0.114 | 0.057 | 0.000 | 0.486 | 0.200 | 0.029 | 0.029 |
2000 | 1 | 2 | 3 | 2 | 4 | 9 | 1 | 0 | 0 | 22 | 90.909 | 0.045 | 0.091 | 0.136 | 0.091 | 0.182 | 0.409 | 0.045 | 0.000 | 0.000 |
2001 | 5 | 0 | 41 | 9 | 2 | 33 | 3 | 0 | 2 | 95 | 21.063 | 0.053 | 0.000 | 0.432 | 0.095 | 0.021 | 0.347 | 0.032 | 0.000 | 0.021 |
2002 | 0 | 1 | 50 | 1 | 3 | 32 | 2 | 0 | 0 | 89 | 22.494 | 0.000 | 0.011 | 0.562 | 0.011 | 0.034 | 0.360 | 0.022 | 0.000 | 0.000 |
2004 | 1 | 7 | 42 | 5 | 4 | 39 | 2 | 0 | 1 | 101 | 19.842 | 0.010 | 0.069 | 0.416 | 0.050 | 0.040 | 0.386 | 0.020 | 0.000 | 0.010 |
2005 | 1 | 12 | 17 | 5 | 1 | 9 | 1 | 0 | 0 | 46 | 43.587 | 0.022 | 0.261 | 0.370 | 0.109 | 0.022 | 0.196 | 0.022 | 0.000 | 0.000 |
2006 | 4 | 12 | 24 | 3 | 8 | 22 | 0 | 10 | 1 | 84 | 23.881 | 0.048 | 0.143 | 0.286 | 0.036 | 0.095 | 0.262 | 0.000 | 0.119 | 0.012 |
2008 | 2 | 5 | 9 | 3 | 1 | 4 | 1 | 0 | 0 | 25 | 80.320 | 0.080 | 0.200 | 0.360 | 0.120 | 0.040 | 0.160 | 0.040 | 0.000 | 0.000 |
2009 | 2 | 6 | 9 | 0 | 4 | 8 | 0 | 0 | 0 | 29 | 69.276 | 0.069 | 0.207 | 0.310 | 0.000 | 0.138 | 0.276 | 0.000 | 0.000 | 0.000 |
2010 | 0 | 2 | 7 | 0 | 3 | 7 | 0 | 0 | 0 | 19 | 105.789 | 0.000 | 0.105 | 0.368 | 0.000 | 0.158 | 0.368 | 0.000 | 0.000 | 0.000 |
2011 | 3 | 5 | 16 | 3 | 15 | 7 | 0 | 0 | 2 | 51 | 39.431 | 0.059 | 0.098 | 0.314 | 0.059 | 0.294 | 0.137 | 0.000 | 0.000 | 0.039 |
2012 | 7 | 12 | 13 | 5 | 20 | 13 | 2 | 2 | 0 | 74 | 27.189 | 0.095 | 0.162 | 0.176 | 0.068 | 0.270 | 0.176 | 0.027 | 0.027 | 0.000 |
2014 | 22 | 10 | 19 | 5 | 20 | 21 | 1 | 4 | 1 | 103 | 19.553 | 0.214 | 0.097 | 0.184 | 0.049 | 0.194 | 0.204 | 0.010 | 0.039 | 0.010 |
2015 | 1 | 17 | 29 | 16 | 18 | 23 | 7 | 1 | 1 | 113 | 17.832 | 0.009 | 0.150 | 0.257 | 0.142 | 0.159 | 0.204 | 0.062 | 0.009 | 0.009 |
2016 | 4 | 9 | 11 | 17 | 13 | 5 | 20 | 1 | 0 | 80 | 25.200 | 0.050 | 0.112 | 0.138 | 0.212 | 0.162 | 0.062 | 0.250 | 0.012 | 0.000 |
2017 | 2 | 12 | 18 | 11 | 12 | 16 | 6 | 4 | 1 | 82 | 24.598 | 0.024 | 0.146 | 0.220 | 0.134 | 0.146 | 0.195 | 0.073 | 0.049 | 0.012 |
factor_order <- c('Biodiversity','Green Infrastructure','Planning and Architecture','Management and Conservation','Cultural Landscapes','Landscape Assessment','Catchment Based Approach','Invasives Pests Diseases','Socio-economic Dimensions')
factor_labels <- c('Biodiversity','Green Infrastructure','Planning','Mgmnt & Conserv','Cultural Lsps','Lsp Assessment','Catchment Approach','Invasives, Pests','Socio-economic')
ggplot(othCCounts, aes(x=`Conference Year`, y=count, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Concept", y = "Abstract Count")
ggplot(othCCounts, aes(x=`Conference Year`, y=prop, fill=factor(Type, level=factor_order))) +
geom_bar(stat="identity", colour="white") +
scale_fill_viridis(discrete = TRUE, labels = factor_labels) +
labs(fill="Concept", y = "Proportion") +
scale_x_continuous(breaks = seq(1992, 2017, by = 2))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))