Chapter 10 Analysis by Other Concepts
Bar charts and tables to examine how contributions to conferences vary by methods
#spec(cpdata)
othdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = OtherC, value = count, `Green Infrastructure`:`Invasives Pests Diseases`) %>%
filter(count > 0) %>%
group_by(`OtherC`) %>%
summarise_all(sum, na.rm=T)
10.1 Total Conference Contributions
General observations:
- Invasive pests have smallest number of studies (and therefore treat qualitative differences in proportions below with caution)
- Management & Conservation and Biodiversity studies componse the majority of studies (56%)
othdata %>%
select(OtherC, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | count | prop |
---|---|---|
Biodiversity | 313 | 0.256 |
Catchment Based Approach | 29 | 0.024 |
Cultural Landscapes | 107 | 0.088 |
Green Infrastructure | 56 | 0.046 |
Invasives Pests Diseases | 14 | 0.011 |
Landscape Assessment | 66 | 0.054 |
Management and Conservation | 379 | 0.310 |
Planning and Architecture | 119 | 0.097 |
Socio-economic Dimensions | 138 | 0.113 |
ggplot(othdata, aes(x=OtherC, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=OtherC, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.25)) +
theme(axis.text.x = element_text(angle = 25, hjust = 1))
10.3 Landscape Type
10.3.1 Using all landscape types
General observations:
- Green infrastructure has by far greatest proportion of Urban landscape studies (makes sense)
- Catchment approaches have greatest proportion of Riverscapes (makes sense)
lspCounts <- othdata %>%
select(OtherC,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(sum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum) #calculate proportion
othdata %>%
select(OtherC,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Total = rowSums(.[2:8])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | Upland rural | Lowland rural | Urban | Riverscape | Seascape | Undefined LspType | Other | Total | Upland rural_prop | Lowland rural_prop | Urban_prop | Riverscape_prop | Seascape_prop | Undefined LspType_prop | Other_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 33 | 156 | 45 | 33 | 32 | 39 | 12 | 350 | 0.094 | 0.446 | 0.129 | 0.094 | 0.091 | 0.111 | 0.034 |
Catchment Based Approach | 5 | 6 | 6 | 19 | 2 | 3 | 0 | 41 | 0.122 | 0.146 | 0.146 | 0.463 | 0.049 | 0.073 | 0.000 |
Cultural Landscapes | 20 | 38 | 9 | 6 | 22 | 25 | 5 | 125 | 0.160 | 0.304 | 0.072 | 0.048 | 0.176 | 0.200 | 0.040 |
Green Infrastructure | 4 | 11 | 36 | 5 | 5 | 6 | 1 | 68 | 0.059 | 0.162 | 0.529 | 0.074 | 0.074 | 0.088 | 0.015 |
Invasives Pests Diseases | 1 | 8 | 1 | 1 | 1 | 1 | 0 | 13 | 0.077 | 0.615 | 0.077 | 0.077 | 0.077 | 0.077 | 0.000 |
Landscape Assessment | 17 | 26 | 7 | 4 | 14 | 19 | 6 | 93 | 0.183 | 0.280 | 0.075 | 0.043 | 0.151 | 0.204 | 0.065 |
Management and Conservation | 56 | 177 | 34 | 45 | 43 | 54 | 13 | 422 | 0.133 | 0.419 | 0.081 | 0.107 | 0.102 | 0.128 | 0.031 |
Planning and Architecture | 9 | 28 | 24 | 13 | 27 | 26 | 1 | 128 | 0.070 | 0.219 | 0.188 | 0.102 | 0.211 | 0.203 | 0.008 |
Socio-economic Dimensions | 23 | 40 | 31 | 21 | 28 | 30 | 1 | 174 | 0.132 | 0.230 | 0.178 | 0.121 | 0.161 | 0.172 | 0.006 |
ggplot(lspCounts, aes(x=OtherC, y=count, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Landscape", y = "Abstract Count", x="Concept")
ggplot(lspCounts, aes(x=OtherC, y=prop, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Landscape", y = "Proportion", x="Concept")
10.3.2 Without ‘Undefined LspType’ and ‘Other’ landscape types
General observations:
- As above
lspCounts <- othdata %>%
select(OtherC,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum) #calculate proportion
othdata %>%
select(OtherC,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(Total = rowSums(.[2:6])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | Upland rural | Lowland rural | Urban | Riverscape | Seascape | Total | Upland rural_prop | Lowland rural_prop | Urban_prop | Riverscape_prop | Seascape_prop |
---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 33 | 156 | 45 | 33 | 32 | 299 | 0.110 | 0.522 | 0.151 | 0.110 | 0.107 |
Catchment Based Approach | 5 | 6 | 6 | 19 | 2 | 38 | 0.132 | 0.158 | 0.158 | 0.500 | 0.053 |
Cultural Landscapes | 20 | 38 | 9 | 6 | 22 | 95 | 0.211 | 0.400 | 0.095 | 0.063 | 0.232 |
Green Infrastructure | 4 | 11 | 36 | 5 | 5 | 61 | 0.066 | 0.180 | 0.590 | 0.082 | 0.082 |
Invasives Pests Diseases | 1 | 8 | 1 | 1 | 1 | 12 | 0.083 | 0.667 | 0.083 | 0.083 | 0.083 |
Landscape Assessment | 17 | 26 | 7 | 4 | 14 | 68 | 0.250 | 0.382 | 0.103 | 0.059 | 0.206 |
Management and Conservation | 56 | 177 | 34 | 45 | 43 | 355 | 0.158 | 0.499 | 0.096 | 0.127 | 0.121 |
Planning and Architecture | 9 | 28 | 24 | 13 | 27 | 101 | 0.089 | 0.277 | 0.238 | 0.129 | 0.267 |
Socio-economic Dimensions | 23 | 40 | 31 | 21 | 28 | 143 | 0.161 | 0.280 | 0.217 | 0.147 | 0.196 |
ggplot(lspCounts, aes(x=OtherC, y=count, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Landscape", y = "Abstract Count", x="Concept")
ggplot(lspCounts, aes(x=OtherC, y=prop, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Landscape", y = "Proportion", x="Concept")
10.4 Organism
General observations
- Management & Conservation studies have relatively low propotion of human studies; greatest proportion of Woodland studies
- Biodiversity studies have relatively large proportion of Inverts (along with invasives)
speciesCounts <- othdata %>%
select(OtherC, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum) #calculate proportion
othdata %>%
select(OtherC, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Total = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | Mammals | Humans | Birds | Reptiles | Inverts | Plants | Amphibians | Fish | Generic Habitat | Woodland Forests | Total | Mammals_prop | Humans_prop | Birds_prop | Reptiles_prop | Inverts_prop | Plants_prop | Amphibians_prop | Fish_prop | Generic Habitat_prop | Woodland Forests_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 27 | 20 | 76 | 4 | 70 | 62 | 9 | 9 | 74 | 64 | 415 | 0.065 | 0.048 | 0.183 | 0.010 | 0.169 | 0.149 | 0.022 | 0.022 | 0.178 | 0.154 |
Catchment Based Approach | 1 | 6 | 2 | 1 | 3 | 4 | 0 | 0 | 16 | 4 | 37 | 0.027 | 0.162 | 0.054 | 0.027 | 0.081 | 0.108 | 0.000 | 0.000 | 0.432 | 0.108 |
Cultural Landscapes | 2 | 39 | 4 | 1 | 3 | 4 | 2 | 1 | 47 | 20 | 123 | 0.016 | 0.317 | 0.033 | 0.008 | 0.024 | 0.033 | 0.016 | 0.008 | 0.382 | 0.163 |
Green Infrastructure | 2 | 9 | 4 | 1 | 5 | 8 | 1 | 1 | 23 | 5 | 59 | 0.034 | 0.153 | 0.068 | 0.017 | 0.085 | 0.136 | 0.017 | 0.017 | 0.390 | 0.085 |
Invasives Pests Diseases | 1 | 0 | 1 | 0 | 6 | 7 | 0 | 0 | 1 | 1 | 17 | 0.059 | 0.000 | 0.059 | 0.000 | 0.353 | 0.412 | 0.000 | 0.000 | 0.059 | 0.059 |
Landscape Assessment | 0 | 11 | 3 | 0 | 3 | 3 | 1 | 0 | 40 | 8 | 69 | 0.000 | 0.159 | 0.043 | 0.000 | 0.043 | 0.043 | 0.014 | 0.000 | 0.580 | 0.116 |
Management and Conservation | 23 | 42 | 83 | 3 | 42 | 54 | 3 | 7 | 100 | 78 | 435 | 0.053 | 0.097 | 0.191 | 0.007 | 0.097 | 0.124 | 0.007 | 0.016 | 0.230 | 0.179 |
Planning and Architecture | 1 | 28 | 5 | 0 | 3 | 4 | 1 | 2 | 39 | 14 | 97 | 0.010 | 0.289 | 0.052 | 0.000 | 0.031 | 0.041 | 0.010 | 0.021 | 0.402 | 0.144 |
Socio-economic Dimensions | 3 | 49 | 10 | 1 | 1 | 6 | 1 | 3 | 49 | 19 | 142 | 0.021 | 0.345 | 0.070 | 0.007 | 0.007 | 0.042 | 0.007 | 0.021 | 0.345 | 0.134 |
ggplot(speciesCounts, aes(x=OtherC, y=count, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Organism", y = "Abstract Count", x="Concept")
ggplot(speciesCounts, aes(x=OtherC, y=prop, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Organism", y = "Proportion", x="Concept")
10.5 Methods
General observations:
- Other than invasives, Biodiversity and Management & Conservation have greatest proportions of Empirical and lowest proportions of Theoretical
methodsCounts <- othdata %>%
select(OtherC, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(sum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum)
othdata %>%
select(OtherC, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Total = rowSums(.[2:7])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | Empirical | Theoretical | Qualitative | Quantitative | GIS | Remote sensing | Total | Empirical_prop | Theoretical_prop | Qualitative_prop | Quantitative_prop | GIS_prop | Remote sensing_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 170 | 61 | 48 | 177 | 71 | 17 | 544 | 0.312 | 0.112 | 0.088 | 0.325 | 0.131 | 0.031 |
Catchment Based Approach | 8 | 8 | 7 | 10 | 8 | 1 | 42 | 0.190 | 0.190 | 0.167 | 0.238 | 0.190 | 0.024 |
Cultural Landscapes | 27 | 26 | 56 | 30 | 23 | 4 | 166 | 0.163 | 0.157 | 0.337 | 0.181 | 0.139 | 0.024 |
Green Infrastructure | 13 | 15 | 20 | 25 | 13 | 4 | 90 | 0.144 | 0.167 | 0.222 | 0.278 | 0.144 | 0.044 |
Invasives Pests Diseases | 11 | 0 | 1 | 7 | 5 | 1 | 25 | 0.440 | 0.000 | 0.040 | 0.280 | 0.200 | 0.040 |
Landscape Assessment | 17 | 18 | 24 | 31 | 23 | 9 | 122 | 0.139 | 0.148 | 0.197 | 0.254 | 0.189 | 0.074 |
Management and Conservation | 181 | 85 | 91 | 176 | 82 | 16 | 631 | 0.287 | 0.135 | 0.144 | 0.279 | 0.130 | 0.025 |
Planning and Architecture | 21 | 48 | 45 | 32 | 31 | 3 | 180 | 0.117 | 0.267 | 0.250 | 0.178 | 0.172 | 0.017 |
Socio-economic Dimensions | 23 | 42 | 63 | 47 | 33 | 5 | 213 | 0.108 | 0.197 | 0.296 | 0.221 | 0.155 | 0.023 |
ggplot(methodsCounts, aes(x=OtherC, y=count, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Method", y = "Abstract Count", x="Concept")
ggplot(methodsCounts, aes(x=OtherC, y=prop, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Method", y = "Proportion", x="Concept")
10.6 Spatial Extent
General observations:
spatialCounts <- othdata %>%
select(OtherC, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(sum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum)
othdata %>%
select(OtherC, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Total = rowSums(.[2:9])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | Micro | Mini | Local | Regional | National | Continental | Global | Undefined Extent | Total | Micro_prop | Mini_prop | Local_prop | Regional_prop | National_prop | Continental_prop | Global_prop | Undefined Extent_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 17 | 49 | 81 | 70 | 54 | 7 | 6 | 43 | 327 | 0.052 | 0.150 | 0.248 | 0.214 | 0.165 | 0.021 | 0.018 | 0.131 |
Catchment Based Approach | 1 | 3 | 16 | 8 | 3 | 0 | 0 | 4 | 35 | 0.029 | 0.086 | 0.457 | 0.229 | 0.086 | 0.000 | 0.000 | 0.114 |
Cultural Landscapes | 0 | 7 | 34 | 37 | 19 | 9 | 1 | 14 | 121 | 0.000 | 0.058 | 0.281 | 0.306 | 0.157 | 0.074 | 0.008 | 0.116 |
Green Infrastructure | 3 | 10 | 22 | 13 | 6 | 1 | 1 | 6 | 62 | 0.048 | 0.161 | 0.355 | 0.210 | 0.097 | 0.016 | 0.016 | 0.097 |
Invasives Pests Diseases | 3 | 5 | 1 | 2 | 1 | 2 | 0 | 0 | 14 | 0.214 | 0.357 | 0.071 | 0.143 | 0.071 | 0.143 | 0.000 | 0.000 |
Landscape Assessment | 2 | 4 | 14 | 19 | 22 | 6 | 2 | 11 | 80 | 0.025 | 0.050 | 0.175 | 0.238 | 0.275 | 0.075 | 0.025 | 0.138 |
Management and Conservation | 12 | 41 | 109 | 89 | 75 | 16 | 7 | 50 | 399 | 0.030 | 0.103 | 0.273 | 0.223 | 0.188 | 0.040 | 0.018 | 0.125 |
Planning and Architecture | 2 | 8 | 43 | 28 | 28 | 2 | 3 | 22 | 136 | 0.015 | 0.059 | 0.316 | 0.206 | 0.206 | 0.015 | 0.022 | 0.162 |
Socio-economic Dimensions | 1 | 7 | 47 | 38 | 25 | 6 | 2 | 25 | 151 | 0.007 | 0.046 | 0.311 | 0.252 | 0.166 | 0.040 | 0.013 | 0.166 |
tfactor_order <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined Extent')
tfactor_labels <- c('Micro', 'Mini', 'Local', 'Regional', 'National', 'Continental', 'Global','Undefined')
ggplot(spatialCounts, aes(x=OtherC, y=count, fill=factor(Type, level=tfactor_order))) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Spatial", y = "Abstract Count", x="Concept")
ggplot(spatialCounts, aes(x=OtherC, y=prop, fill=factor(Type, level=tfactor_order))) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Spatial", y = "Proportion", x="Concept")
10.7 Temporal Extent
10.7.1 With undefined
General observations:
- No obvious patterns
OtherC | Hours | Days | Weeks | Months | Years | Decades | Centuries | Longer | Undefined Temporal | Total | Hours_prop | Days_prop | Weeks_prop | Months_prop | Years_prop | Decades_prop | Centuries_prop | Longer_prop | Undefined Temporal_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 0 | 0 | 3 | 12 | 34 | 44 | 4 | 3 | 199 | 299 | 0 | 0 | 0.010 | 0.040 | 0.114 | 0.147 | 0.013 | 0.010 | 0.666 |
Catchment Based Approach | 0 | 0 | 0 | 1 | 5 | 4 | 3 | 0 | 17 | 30 | 0 | 0 | 0.000 | 0.033 | 0.167 | 0.133 | 0.100 | 0.000 | 0.567 |
Cultural Landscapes | 0 | 0 | 0 | 3 | 14 | 13 | 6 | 2 | 68 | 106 | 0 | 0 | 0.000 | 0.028 | 0.132 | 0.123 | 0.057 | 0.019 | 0.642 |
Green Infrastructure | 0 | 0 | 1 | 2 | 8 | 12 | 1 | 0 | 32 | 56 | 0 | 0 | 0.018 | 0.036 | 0.143 | 0.214 | 0.018 | 0.000 | 0.571 |
Invasives Pests Diseases | 0 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 8 | 14 | 0 | 0 | 0.000 | 0.214 | 0.071 | 0.143 | 0.000 | 0.000 | 0.571 |
Landscape Assessment | 0 | 0 | 0 | 0 | 2 | 10 | 0 | 0 | 51 | 63 | 0 | 0 | 0.000 | 0.000 | 0.032 | 0.159 | 0.000 | 0.000 | 0.810 |
Management and Conservation | 0 | 0 | 0 | 12 | 39 | 53 | 10 | 3 | 241 | 358 | 0 | 0 | 0.000 | 0.034 | 0.109 | 0.148 | 0.028 | 0.008 | 0.673 |
Planning and Architecture | 0 | 0 | 0 | 3 | 14 | 22 | 3 | 1 | 67 | 110 | 0 | 0 | 0.000 | 0.027 | 0.127 | 0.200 | 0.027 | 0.009 | 0.609 |
Socio-economic Dimensions | 0 | 0 | 0 | 6 | 18 | 28 | 4 | 1 | 78 | 135 | 0 | 0 | 0.000 | 0.044 | 0.133 | 0.207 | 0.030 | 0.007 | 0.578 |
10.7.2 Without Undefined
- No obvious patterns
OtherC | Hours | Days | Weeks | Months | Years | Decades | Centuries | Longer | Total | Hours_prop | Days_prop | Weeks_prop | Months_prop | Years_prop | Decades_prop | Centuries_prop | Longer_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 0 | 0 | 3 | 12 | 34 | 44 | 4 | 3 | 100 | 0 | 0 | 0.030 | 0.120 | 0.340 | 0.440 | 0.040 | 0.030 |
Catchment Based Approach | 0 | 0 | 0 | 1 | 5 | 4 | 3 | 0 | 13 | 0 | 0 | 0.000 | 0.077 | 0.385 | 0.308 | 0.231 | 0.000 |
Cultural Landscapes | 0 | 0 | 0 | 3 | 14 | 13 | 6 | 2 | 38 | 0 | 0 | 0.000 | 0.079 | 0.368 | 0.342 | 0.158 | 0.053 |
Green Infrastructure | 0 | 0 | 1 | 2 | 8 | 12 | 1 | 0 | 24 | 0 | 0 | 0.042 | 0.083 | 0.333 | 0.500 | 0.042 | 0.000 |
Invasives Pests Diseases | 0 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 6 | 0 | 0 | 0.000 | 0.500 | 0.167 | 0.333 | 0.000 | 0.000 |
Landscape Assessment | 0 | 0 | 0 | 0 | 2 | 10 | 0 | 0 | 12 | 0 | 0 | 0.000 | 0.000 | 0.167 | 0.833 | 0.000 | 0.000 |
Management and Conservation | 0 | 0 | 0 | 12 | 39 | 53 | 10 | 3 | 117 | 0 | 0 | 0.000 | 0.103 | 0.333 | 0.453 | 0.085 | 0.026 |
Planning and Architecture | 0 | 0 | 0 | 3 | 14 | 22 | 3 | 1 | 43 | 0 | 0 | 0.000 | 0.070 | 0.326 | 0.512 | 0.070 | 0.023 |
Socio-economic Dimensions | 0 | 0 | 0 | 6 | 18 | 28 | 4 | 1 | 57 | 0 | 0 | 0.000 | 0.105 | 0.316 | 0.491 | 0.070 | 0.018 |
10.8 Concepts
General observations:
- Biodiversity and Management & Conservation have similar proportions; both with relatively large proportions of connectivity and fragmentation
conceptCounts <- othdata %>%
select(OtherC, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(sum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -OtherC, -sum) %>%
mutate(prop = count / sum)
othdata %>%
select(OtherC, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(Total = rowSums(.[2:11])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
OtherC | PPS of landscapes | Connectivity and fragmentation | Scale and scaling | Spatial analysis and modeling | LUCC | History and legacy | Climate change interactions | Ecosystem services | Landscape sustainability | Accuracy and uncertainty | Total | PPS of landscapes_prop | Connectivity and fragmentation_prop | Scale and scaling_prop | Spatial analysis and modeling_prop | LUCC_prop | History and legacy_prop | Climate change interactions_prop | Ecosystem services_prop | Landscape sustainability_prop | Accuracy and uncertainty_prop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 59 | 104 | 24 | 77 | 71 | 34 | 15 | 35 | 30 | 0 | 449 | 0.131 | 0.232 | 0.053 | 0.171 | 0.158 | 0.076 | 0.033 | 0.078 | 0.067 | 0.000 |
Catchment Based Approach | 3 | 2 | 1 | 8 | 9 | 5 | 5 | 5 | 2 | 1 | 41 | 0.073 | 0.049 | 0.024 | 0.195 | 0.220 | 0.122 | 0.122 | 0.122 | 0.049 | 0.024 |
Cultural Landscapes | 2 | 11 | 2 | 17 | 46 | 39 | 10 | 28 | 28 | 1 | 184 | 0.011 | 0.060 | 0.011 | 0.092 | 0.250 | 0.212 | 0.054 | 0.152 | 0.152 | 0.005 |
Green Infrastructure | 10 | 10 | 3 | 14 | 9 | 3 | 7 | 20 | 10 | 0 | 86 | 0.116 | 0.116 | 0.035 | 0.163 | 0.105 | 0.035 | 0.081 | 0.233 | 0.116 | 0.000 |
Invasives Pests Diseases | 1 | 2 | 1 | 3 | 3 | 0 | 0 | 0 | 2 | 1 | 13 | 0.077 | 0.154 | 0.077 | 0.231 | 0.231 | 0.000 | 0.000 | 0.000 | 0.154 | 0.077 |
Landscape Assessment | 6 | 5 | 4 | 20 | 21 | 11 | 1 | 11 | 11 | 2 | 92 | 0.065 | 0.054 | 0.043 | 0.217 | 0.228 | 0.120 | 0.011 | 0.120 | 0.120 | 0.022 |
Management and Conservation | 44 | 97 | 18 | 75 | 104 | 51 | 20 | 49 | 52 | 1 | 511 | 0.086 | 0.190 | 0.035 | 0.147 | 0.204 | 0.100 | 0.039 | 0.096 | 0.102 | 0.002 |
Planning and Architecture | 8 | 30 | 6 | 32 | 27 | 10 | 14 | 27 | 34 | 1 | 189 | 0.042 | 0.159 | 0.032 | 0.169 | 0.143 | 0.053 | 0.074 | 0.143 | 0.180 | 0.005 |
Socio-economic Dimensions | 10 | 13 | 7 | 21 | 54 | 26 | 16 | 56 | 34 | 2 | 239 | 0.042 | 0.054 | 0.029 | 0.088 | 0.226 | 0.109 | 0.067 | 0.234 | 0.142 | 0.008 |
ggplot(conceptCounts, aes(x=OtherC, y=count, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Concept", y = "Abstract Count", x="Concept")
ggplot(conceptCounts, aes(x=OtherC, y=prop, fill=Type)) +
geom_bar(stat="identity", colour="white") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_viridis(discrete = TRUE) +
labs(fill="Concept", y = "Proportion", x="Concept")